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Swarm field dynamics and functional morphogenesis

hlark N1. Millcms
Complex Systems (;rolw. Theoretical Division. md (.’enter t~r ~onlimr Studies, \[S EN58,LOS AIaIIIUS \ilti,)[l,il

Laboratory, Los ~ ltMIIOS. S\ I t17:M5, USA. & Santa Fe [Ilstitute. lti~()Old Rcos Trail, Suit A. %nta Fe, S\ I 8T3(JI, I” s .\

A claae of models with application to swarm be-
havior ae well as many other types of complex 9ys-

tems & studied with an emphasis on analytlc tech-

niques and rem.dtm Special attention is given to the
role played by fluctuations in determining the behav-

ior of such systems. In @lcular it b ouggeated that
such fluct~tb~ may play an active role, and not just

the usual Pamlve one, ia the organization of structure
b the vicinity of a non-equl.llbrhun phaae trandtlon.

One model, that of an ant swarm, b analyzed in more

&tall ae an illustration of these Ideaw

1 Introduction

[n recent years there has been a great deal of interest in
complex adaptive systems. Typically such systems arc
composed of a number of fairly simple interacting com-
ponents which give rise to some form of global coopera-
tive behavior. Sometimes this global Ewhavior is studied
in ita own right, and sometimm it is allowed to evolve
under externaf selection pressures which act according
to some evolutionary algorithm on the local rules, Of-
ten the source of order, or tanordering transition in such
systems is due to direct couplings between the basic com-
ponents. These models often wrrcspond either dircwtly,
or to some generalization of Ising and Spin I&MOt~e
modefs in statlsticaf physlm. Concepts such a frustra-
tion, multiple basins of attraction, and rugged fltntw
landscape play an Importmat role hi the understanding
of the complex behavior of such syetam,

In this paper a rmmowhat different approach is pur-
sued which ia In Ilne with the basic pdncipke acting b
hind a variety of IJyaterm In nature, particularly bldog-
ical on-, Here we study what WIII he called dgmerglc
procoaoaa, or statlstlcd swam fioldq to be defined
M uyotema of uutonomow agants, referred tQ aa partlM
cla, which Interact not via direct coupllngn, but through
Mmedium of anvironmmd morphogenetic fleldn, ‘l’he
murphogenetlc fldda both detwmine the behavior of the
individual agenb, and are in turn acted on by the agantn.

The am many good reaeon why one would wmt to
ntudy ouch pro~ or awarrru. Swarrna am a useful
paradigmatic example of a Lwmplox adaptiva oyntema in
whirh n number of eimple compommts mthihit emergent
hehuviorn on the cwllectlve rode, ‘1’hmeemer~ent prop

erti=, when taken in the proper wntext suci) tts iitl iitl[

sv.wrrn, may represent biological functionality or ..siviirrl]

inteiligence”’. Such a study might also be expected to
shed light how cooperative behavior evolved, and 011[he
evolut iormry distance between various types of sumrn
behavior. questions of profound interest to social bioi-
ogista. Lastiy such process ailow an explor~tion of the
relationship between non-quilibrium ph~ tr~llsitions

and complex behavior in model systems of intmwting
autonomous agents.

In the view of the author, some of the rt’ctlllc ii~

preaches to the problem of the collective beh;~viur of
autonomous agents, and to artificial life in genen-d. h~ive
several weakn~. One of the purpwes of this work
is to address some of these inadequacies via the appli-
cation of more rigorous techniques. Thus, in addition
to obtaining analytic type results for a class of specific
systems with applications to swarm behavior, one of the
main goals of this paper is the introduction of a general
set of techniques which can be used as H framework for
the study of a great variety of such systwns,

The root inadequacy of much of the work in this
area is a geneml lack of emphasis on tinaiytic rmuits,
and an over dependence on computer simultitiuns. it is
quite often the case that, even when tm analytic tool is
available for the study of a particular probiem, rnnny
researched are still content with dmuhttion, ‘l’his is [he
rawdk of art emphasis on bhavior alone, instead of fwrli-
Iicaof behavior which should k the true object of study.
I15e abihtpto simulate wmp/a behmnur u not the same
thing u the difitg to urtderatmi it, Althongh t Iwr(’
can Im Ilttle doubt as to the value of simulations, par-
ticularly WJa laboratory for the expiorntion of the bn-

tiic phenomena, simulation almust never provide certain
typea of information which are centraf to the Inwit nm-
bitioua goab of artificial life. Analysis can often provido
information about farnilla of behavior which ~imuiution
in simply unable to provide, snd it in preciwly tiIiH in
formation which is of central importance to IIHcnmf

undetntd.lng of cotnpleK systemam Thiu la particuhuly
the cw when one aeeka to undamtand any ~ymm UIMNI

which ndaptatlon on the npaceof behaviom plRyH,or Ii/w

plmyed,fm Important role.
Another inadequacy which cwmnonly IXVUIM1)111h

the conceptual mid modnling procmn is the Inck I)f WIIII
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cient appreciation of the role of fluctuations. [t LSinter-
esting to note that even with the current emphasis on
bottom-up modeling. there is still a very prewdent top
down lack of familiarity with some of the more profound
effects of noise on complex systems. Fluctuations wn in
fact an phy a constructive role in the crest ion of order
and complex behavior going WVIIIxyond the passive iui-
tiation of order producing transitions via an timplifica-
t ion procem, * to the active production of struct ure which
has no deterministic analog,z ~ fact which is still not
sticiently weU understood by mmiy researchers. Most
complex adaptive systems will fall into this category
since fluctuations in such systems are often large, and
usually enter in a nonlinear, multiplicative way. This
is frequently the result of the nectssary balancing act
between the Conatnctiue polesof reliability and adapt-
ability. Therefore, in this paper we ernphamize the points
in the modeling procwm where fluctuations enter into the
description. Tk,ti is made pmsible by the fact that we
will startwith a full theoretical formulation, which con-
taina all the information about fluctuations we may wish
to make use of, It is then pasible to work backward ~
ward the full th~ry through a sequence of successively
better approximations which we hope will capture im-
portant characterbtlc of the full system.

Since there b not space hem for a detailed expmition,
many resultu have km outlined References are made
to the appropriate sources for thase who wish to see a

full expsition.

a Stigmergic Procasea

2.1 Basic ingredients

Wgmergic procmHIware here Introduced M a generaliza-
tion of the rmncopt of utlgmergy {born the Greek maan-
Ing %clte to work”) Introducai by Grad M a hypoth-
mio about the collective n-t buildlng of mid huwtu.

The hypothab of otlgmeqg, w cbadbad by Wlbon,4 is
thfit it u the WCJ+d- acwnpiisk$, ruthev than di.
net uwnmuntiti among rid matuJ, thatdnkw the

inmcb to pfbwn WWond labor. The concept of otig-
mergy haa b been invoked more recmntlyInregardoto
warm lAavlor,B

The more generallzwl Idea 0( a mtlgmerglc promo

‘(1, Nlmth, &1, l+l~be, ~~-~~n h No~wm
N##lw Wllql (1977).

‘w. Hmmtkanh, & R. Mawr, NLA hdwvi ‘lhnat~
!lprh~vwlq (leM),

‘P P Orti. I?spmWmla1s, *W (lMO).
‘E: 0, Wltwa,m hudsLId9m&Iklknmp(lWI),
‘(l TbgrouIu, & J.-L, [h@Ahl~, W Workry hmr W&

otM48 (lwa).

●

is realized here in systems ~omw%p(~,)[ [hr(~’ llilsi~ ing-
redients. The fimt inw~ient ~ * ~lr~,f(C/eIIIJII{IIVI(!.S,‘
‘rtleparticles repr~nc the ~,LtO1lolllLlllsii~t-’lll+ or tJr-

ganism. and the dynami~ ~i~crib= how [Ilc)y IIIII\t* ~11

sW~- .Since w! are de~ing with VerV ILllr(’liid)l(’l“tlIII-
ponents, this dynamim is n~tiily” still isll~:ll ill II(-

script ion. The xnnd i~lgr~ient ig LIle l//(jt7)h(~)#’)~plff:
jiefd dunamics. There will be a fieId, Or nl~mbt’r lJf Iidds

describing the environment which the orgnnisms wwe,

and in turn influence by their ~tiow. The (l~lliimi~ I)F

the morphogenetic fields deacrih how the wwironnwnt
changes with time, Lastly, some form of coupfing is Irmde
Iwtween the particlee and the fields, This coupling ttiliw
the form of a behavioral function which tells the parti-
cle how to move in response to the morphogenetic fields,
and in turn, how the particlea act back on thtw SIl&

The stigmergic element is imposed by the simpliticalion
that the particlee are not influencd by etwh ollwr vitt
direct couplings, but only through the environment.

2.2 Particie dynamics

The dynamim of a pwfick is a Markov process on
some MU state space X, which may & either wmtin-
uous or diecrete, The particle density
Mastertquation

P(X, r) obeys the

i.)p(%,r) I— =,Y{wr(xly)dy, r)or

-W,(y/x)p(x. r)} d“y, (1)

where U’r(XIV)is the probability density to go from stm P
y to x W time r. All of the statietlcal properties of lt:r$
panicle flow can be calculated In theory from the master
quation, and we will amume for our purpcwse that the
fluctuatlontr In the system are primarily driven by three
statbtlcd propertkq which are due to the discreteneun
of the particl~, and random nature of their motion.
Arr we shall ~, our deecrlptlon of the morphogendc
flelrb will not Include intrinsic fluctuations, which JUeex-
pected to k of negligible im~rtance whtm mmpmred to
the fluctuatlona of the particle derulty. Thio iH IWCHIM!

SUA flC& will geflerd be corn- Of a VMt Iillnlh (Jf

com~nentq tir example, molmdm of some phermnwd
mhotance, no we can effectively modol th~m M conthm-
ourr vrdud quantltlm At every point In Mpwe, We thnt
thb by dotm not mean that tha rrrorphogerwtic fields will

not Iluctuate, only thnt three fluctuatlonn WIII Ix drl vvn

hy 1119particle fluctuatlonm only,

M(mt generally n will he Intemte(i In opw ~yww~,

whmr thmc b both m IIOW of parth:hw into IV frtm vx-

torrml mmrcm, Iud n Ibw of partlclen OIIL t )f t II(I Mywml

2



at “Mious points. [n such a cwe it is useful to intro-

duce an extended space of stat= X + = ,Y F e. whtw e

reprents states external to A’. !vhich play [I]&rule of i[

particle sink. In this case we can w-rite

dP+(X. T)
=

J
{ll’-r(,xly)p+( y.T)

ih .v-

–W-r(y(x)p+(x. T)}d~y + jr(x). (~)

where P+(x, T) = p(x. r) + 19e(r) i(x - e) is composed
of a continuous part P(X, ~) on A’. and a discrete part
PO(T) on e. The inhomogeneo~ term f,(x) k the HOW
of density at x into ,Y from an outsade which we will
regard as being entirely independent of the set of states
e.

As a consequence of the local conservation equation

J W,(ylx) (Py = 1,
x

(:1)

the
the

Master equation for a closed system can be put in
form

Op(x, T) _
& J

~r(xly)dy, T) dDy.
x

Likewise as a consequence of

J,r+w,(yJx) rf~y = 1, (!5)

for open systemq, the Master equation can be put in the
form

Llp+(x,r]—. ,=-
/

~r(xly)~’(y, ~) dDY+L(X)@)
ih x+

where W.(xly) = W,(xly) - 6(x - y),

2.3 The morphogenetic fields

The second basic element of a Stigmergic process is n
morphogenetlc Ileld U(X, r), or fields Ui(x, r) on A’. The
mmph~enetlc flelda reprwmta the setof environmental
stimuli which the partich rqcmd to, and act on. [n
general the dynamica of theme flelda will be dmcribed by

where Do is a ditfu.sion constant.
A more complica[mi situation couhi be (Illvisiollt’(1ill

Lhe case of nmt building. Suppose wwnow htiv~ ii [w

(wmponent field (aP, an ), where UP will be a phPr~m(J1liIi

substance. and an will be nest rmwrial. The nfit mate
rial is picked up at a certtiin rnte N~ by the insects. In
;~ddition the tnaterial is laid down in proportion to wrne
function h(am) of the mnount of nest rll~ilt’riiilprwmt.
\Ve can wriLe

ihn(x, r)
—.-K~n~+n~{f7n)j)l,

h

where ~ is the demity of workers not carrying nest mti-
:erml, and pl the densities of worker who nre cilrryin,q
nest material. In this case, it is the nest rnnlt?ria] itself
which emits pheromone at a rate rIP, where we might
write for the evolution of the pheromonal tield

dUp(X, T)

&
= D., V%p - fcpup +qp a“. (10)

The concentration of the pheromone aP will in turn &
termine where the insects go, i-red hence Lhc bui]diilg
behavior.

This Iajt type of model illustrates an importmt point
Rbout stigmergy. ~riginal]y the concept W’LLS used to

refer w behavior which is stimulated only by work al-
ready done, that is, by the nmt m~teriml. For our pur-

PCWSthere ~ no practical distinction between the con-
struction of nest structures, and the “cor~tructitm” of
n pheromorml field. They play equivalent roles in the
theory. Thus, in the preeent generdizution. the criti-
cism of the concept of stigmergy ttmt in rm uy situ~tions
pheromonaf stimuli contribute tdong with utlwr wlvirml-
mentrd stimuli L entirely irrt4evFml, ‘[”heImqic prowssw

ure the same whether the organism rmqxmd to tlw m~t
ur to the pheromonal Iield, or both. “[’hemodels studitvi

Ikrtial dlffere-nthd equatbns of the form &U =, $Iu, ~: ~;l, here will he phemmontd field models. Anot hm cri ticir+m,
where ml are a set of field parameter. A few exampleu that a stigmergk machine will in generrd IM untdie to

will be mentioned as illustratlmu, but them are a nearly shut down when the job is finished, is ~tently irwor-
ent.tleas variety of both typcn and dynamlca of the ~tim- rect. A closer look ~t the st:wct ure of such procwsvs

1111. rnvwda that mch mechanisms nro quite mwily invorpo-

One of the trimphmt situatlorut la a fixed on~curnponerlt rated into the l~haviom of a stignlerAi~ Pr~~~~ M ~lc-
phoromonal field which vvolwm accordlrrg to flntd Aove, ‘1’hlnin because the heh~viorrd st,ntm+urv

&(x, r)
phssm separated by crltlcal boundurlm which ~luptvl(l

—. .: -R u t q P,
or

(7) (m the global crlvlronrrrenttd ~ttite, WVwn t}w (’!lvlr(m

rm’nhd statp chrmgem,the boh~viord rmpim.sv ~’iuiINWH
whwreK rnenaurm the rate of evnporwtlon, breakdown or t.hro~i~hsuch Nphaae trmudtion point mnd shut (m ~wldr
rwnovrd of the nuktance, IMK.Iq the rnte of emlmion of in tt very ~htwp rrmnrwr.

:J



Other types of systems which fall into this tl~~ssare
swimming bacteria and algae.6 physicnl trail t’(ormatio]l,

the evolution of river network,7 diffllsive transport in

polymeric materials,s population distribution IIIO(klS.

various r,ypes of fractal growth phenomena. q and devel-
10 ~kjvio(lsly. ~(l~h Iy]odels ~~~~rlOplTlentd morphogenesis.

take virtually limitless forms. Jlulticomponent partick

s:;sterns can be considered in addition to mldticompo-
nent morphogenetic fields. W-e will limit ourselies here
to systems composed of one tjpe of particle and one
type of morphogenetic field in order to emphasis the ba-
sic principles.

2.4 The behavioral coupling

The transition matrix W will depend on the morpho-
genetic fields. While the dynamics of these fields (are
somewhat fixed by the physical situation which is being
modeled, the response of the particles to the field as en-
coded by the transition matrix might represent a consid-
erable range of behaviors. As Weshall see, small changes
in the microscopic behaviors of the particles can resuit
in large changes in the global behavior of the swarm,
or particle field. This variability has significant implica-
tions not only for the behavioral response of the swarm
to external stimuli, but also in the evolution of coop-
erative behavior. Wilson has remarked that an under-
standing of how this occurs would constitute a technical
brwakthrvugh of exciting proportions, for it unll then be
possible, b~ artificially changing the probability matrices,
to estimate the true amount of behavioral evolution rv-
quiwd to go from [the behamor of/ one spec$es to ... that
of another. ‘1 He has further remarked that such Iarjqe
behaworai changes resulting from small changee in the
individual dyrtamica would provide evidence that social
hehrwior evolvee at least as rapidly as morphology in
sociaf insects. This could provide an explanation why
hehanoml diversitg far outitnps morpho!ogicaf diverwtg
at the level of species and higher taxonomtc categows in
social insects.

We will be intereetd in local dependencim, that is,
where the individual behavior is detmrnined only by 10
cd stimuli, This models the somewhat inevitable fact
that the individual organism in the swarm have little or
no knowledge of the state of the swarm as a whole. The

.——
‘J, 0, Kenrder, L’ommertts ‘I?teoreticcd Molw 1, 85 ( 1WV).

‘9, Kramer, & M, Marder Phvs, Rev Ldt, 88, ’205 (lW’2)
“R, w CoX, 44 D.s, Cohen. J. POIWW ski. B 27, 589 ( l~w
“1’, Vk%ak, Hucttd Cmwh Phenomena, World !+cimrtitie

(IWO)
1~),], ~], Mitt@nt,h~, ]rl: Lec(um.?m the .%”lom!? 0/ ( ‘O@r’tt/

(1) him d.), A&lku. Weeley([VW
11Wilrrr-rn.

. .

collective response ,jf the ~\ViiJII~. ~)[1 rtle ,Jl!lt’r l~{m(l, i>

capable of N QJoba! inteq.~~tjorl ot’ el:i irolltn~’r~[f~l irlt’~~r- ‘

rw~tion. [I\ this sense ~h~ ~kvarri) at 2~1)~giit,ll LllI)t’ (i\]]
be [n a state ~hlch represents ~ ~o~~luc(~iirl[egriite(i 1’(’-

~ponse to ttle e~t,~rnal sti~](lji one of tilt; rrliiirl <l);~l>lJt
th(’ pt’t%etlt \rork is to ~ho~v }lO$Vit is p(h$lble {or 1()(’itl

individual behavior to Iea(j to ~o\\t~ctive <Iot)itl t)t~});lii~)r.
and ho}~ this glObaI beha~lors is ellcw{eu 1)~ tilt> liI(:tl

~iyrlarnia.

In addition to its depenc~ence on the Ioci\l rt)orpho-

genetic field, the transition matrix \vill depend on one

or more behavioral parameters mP, referred t~l ?~spar-
ticle parameters. These parameters ~vill rleterrnirw the

response of the individuals to a. If u represents ttle
Input, the internal parameters represent the prfn~ram-
rmng of the “stigmergic machine”. ‘rhese ptlriUTlt’tt’rS

might vary from individual to individual. particularly
between members of different castes, but here ire \vill
study swarms composed of individuals with i(!entical be
havior. In addition, the behavioral parameters might
change in response to external stimuli, m chttnge on
the evolutionary time scale. A determination of the de-
pendence of the global behavior on the behavioral pa-
rameters, as well M on the swarm parametem such M
the number of participants, is the goal of the mcxhods
used here. once this dependence is known the range
and types of behaviors which can be encode{i hv vari-
ous classes of individual behaviors can be examint’(i in a
more or less comprehensive way.

3 Sirnplifkatisms

3.1 Adiabatic elimination of particle modes

Kngeneral the particle dynarniu will be inhornogeno~ls in
time since the morphogenetic fiel~t~will chtmge in time
However, for many purpowe we will wtint to make the
npproxirnation that the morphogenet ic fields, ami twuc~
the transition matrix, changes very slowly on smdcs typ-
ical of the particle dynamics relaxation time. ‘1’histntt.v
often be true quite generally. However, this approxirnn-
tion is often quite good in the ryqion OJa rwn-eqwhbrwm
phase tmnsation, even for systems where typically the
time scales are riot well separ~teri. This is bw’au~e itl
the repjon the unstable rnod~ of Msystems will exhibit,
critimd slowing down, and will relax on MLimescnl:l milch
]rmgcr than the time scale of the~tttble mmim, Siuw the
unstnblt’ modes can be viewml M fixed parauwtws whirh
(Idwtnine the quasi-stationary stdde modes, tht’ sl~~td(~
mmlea me s~id to be slaved to the unstablv mmhw,1‘J It
is prwistdy ttwae twgioswof transition whivh wo will Iw
—.-. - .——— —

‘‘}1 Ilaktm. Svnerueha, “1’birdW, Sprin~er-Verln~ t 1!Ml)



most inter~ted in, since the ordering behavior of slich
systems is largely determined by these critical points.

In our case it is the particle modes ~vhich are the sti~-
hle ones, and we will study the particle dynmi~s ~~ith
a trmsition matrix u.hich varies quasi-statically. For

convenience we will ~vorkin the bra-k nwaion ~vhvrc
P(X, ~) = (x~p(~)). i~rl(t W(,X!Y) = (xl~~lY). “rhe left
imd right eigenvectors of kV nre given by }Vlpx) = A lPA)
and (p~lW . . A (p~l respectively. The spectral decompo-
sition in terms of t]le eigenvectors of the operator W is

written as ~~ lp~) (~Al = 1. Eq. -! can then be written
M

;l?~(~)) = ~[pA(~)}I (11)

which hog solutions of the form lPA(~)) = eA71P~). ~f’e
normalize the eigenvectors according to (PAlp~) = 1.
The Iocaf conservation equations insure !hat (POIX)= 1.

nnd ~z{Xl~A) dDX = 60A. We can do likewise for the
homogeneous equation for nn open system on extended
state space X‘,

~lp+ T& A( )) = VV+lp; (T)). (12)

where Wlp~) = Alp~). In this case all of the parti-
clti eventually flow into the adsorbing state e, so that
(xlpo) = N6(x - e).

The situation is, of course. more complicated when
there is a driving flow of organism into the network,
J(x) = (xl/), so that we have the inhomogentxms equa-
tion

#lP+(T)) = W+lp+(r)) + Ij). (13)

We are only interestal in the long time distributions cm
X, which are independent of any initiaf conditions. The
stat icmary statea cart be calculated, 13

(14)

[n addition all the statistical prop.ertieu of the fluctuation

dmut this value can be cafculutal from the maater equa-
t ion. To determine th- fluctuation for open systems
one must of course also s~ify the statistical properti~
of the tlrlving term I/).

The quasi.stationary particle densitien will depend
on the morphogenetic fields over the entire spacw A’,
nnd on the external fcwee. III addition, since the trnnsi-
tlon matrix will depend on the particle parameters ~p,
the quui-statiormry particle dtmity will uko depd
Im them parametem, P,Iu, Wp](x, r). !.IIt us con~ider
.—— ... ———

‘~lkt.M, MulnmM,[u ALIFE Ill (In pr-, 10WA).

where g(e. nP) is a function describing the fluctlwions
of the quasi-stationary particle density tibout its mean
value, and :(t) is gaussian \vhite noise. (:(t)) = O. (<(t ):(t’)).
Since ps will depend on both the global state of o. Md on
the global boundary conditions, this is a glorx-d!yC(JU@?d

set of equations for the evolution of the morphogtme~ic
fields. Slating of the particle field therwfum allo UIS(In
expiicztly coupled global d~namics to emerqe Jmm /he
,stnctly local intemctaom of the model. providing il key

to how a globally integrated rqonse may emerge from
a system of locally acting agents. This type ot global
coupling through separation of time scales could be ex-
pected to be of the greatest importance in self-organizing
systems composed of a hierarchy of processes each act-
ing on a different characteristic time scale. [n this pttper
we will focus on how just two of these levels interact.

The noise in the system is of the multiplicative type,
since the strength of thv fluctuations ttbout the qu;~i-
statiormry particle density will in general also (Icpend
on u. [n addition to amplifying tin insti~bility which
exists in the abeence of noise, this type of Iluctuntiun

can also produce. transitions tmcfordered belmv ior ill its
I)wn right. (he of the consequence of this fact is th itt

slaved particle field will constructively tfetmmilw t.lw
self-organization propertim of the systems thmrqb us

jluctuutmg pru~rties, as well as through quasi-stationtuy
values. Thp is a fact which should be cortstt-mtly he t~mn
in mind when studying such models.

[n many CW9 it mhy be necessary to proceed wilh
cuutiort. The steps outlined above will hold when the
fluctuations are wmfl enough, th~t is, when ,y(e, nP)
is small enough. In many systems in nmture, partiml-
Iarly onm compd of very many purts, this nswmq>
tion h quite valid, However, If the system of p~rtmlt~
we are considering is a swwm, the fluct uutiona nmy nut
be smnll unough since the number of participtmts muy
b rcltttively few. A much more detailed (kwssion of
these subjects will appear shortly, *4

‘4if M Mlllonn. I%us. lti, ,4 (In preparation, lWI).
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3.2 Detailed balance and the thermodynamic
analogy

For now we will consider the C= where the transition
matrix takes the form

l~”[,xiy) X J’(a(x)) g(r), ( 16)

\vhere J is some weighting function describing the effect
of the field u on the motion of the particles, and g(r) is
a probability distribution of jumps of length r = lx - yl.
When properly normalized the transition matrix is given
by

(17)

Transition matrices of this type obey the detailed bal-
ance relatiorw

~(4Y)f(dY)) = ~(ylx)f(dx)). (18)

The property of detailed balance allows us to determine

all the statistical properties of the qwt.si-stationary par-
ticle field.

An onet~one analogy with a thermodynamic sys-
tem with energy U(a(x)) and temperature T = 3-L can
oe made if we set

~(a(x)) = exp(-flU(a(x))), (19)

where any parameter T which affecta ~ can be regarded
as a temperature parameter if {(u(x); T) scab like

f(a(x); a T) = ~-(u(x); T), (20)

Statistical quantiti~ of inter-t can then be calculated
from the one particle partition function

z=; ~ (21)d~x eXp (-d~(U(X)))
d

nccording to the usual prescriptions, where V is the totaf
volume ~f the state space X. The N particle partition
fIAIICtiOn is Zfv = ZN.

Let w partially evalua~ the partition htncticm over

tne volume A of pheae space tith a given energy c,

z=~
/v u+,

cfDx exp(-@J(u(x)))

t ~ exp( –UC). (22)

The mean particle density in the energy state c is given
by

TO first order the t]llctuiLtiOl15 ilr(’ qi~t’11 lJ\” [!i(l (Ivli,.il}

(Dispersion of the parciclti in the t wwr<} ●[iii(’.
.

‘~he slaved particle field in enerw ~tat~ E t’fiIl LIIPIII)e
represented to Iowet order in the Huctm~[ions by

3.3 Fixed pheromonal field

lVe will now consider in greater detail one of the simpksC

cases which has many applications in the area swi-mn dy-
Ilamics, a fixed pheromonal field obeying the Eq. 7. ‘flc
field parameters are the decay rate ~. and the t+n~ission
rate q.

We will first illustrate the types of self-organiz~tion
possible by such a morphogenetic field, when ciriwm by a
closed system of particles obeying (ietailed Munce. .-\f-
ter adiabatic elimination of the particle density the sta-
tionary condition on the pheromonal field can be written
U(y)j(u(x)) = u(x) J(u(y~).ls Let us tubitrarily pick
two different points x and y, and let r = a</uS be the
ratio of the pheromone densities at th= points where
a< < u>, so that 0< r s i. We can write the s;ation,wy
conditions as

We want to inquire about the roots F the equation g(r) -
0, that is, what are the number of possible rutios of
pheromone density at differing point of the stationtiry
distribution. one solution is always f = 1, “.vhichcorre-
sponds to the homogenmue distribution. The hornoge
nm.w distribution givca rise to o new branch of solutions
when g’(1) = 0, tl at is, at the point where the slope of
g(r) at r = 1 changes signs. The homogeneous state is
unstable when

where X(U) = -W(a) is known as the cttemottwtic fnc-
tor, which it analogous to a force, and 7 ie the mean
value of u, where 7 = Nq/Vx, Thus, for small valua
of the Ile;d density the field must be spatially hornogc+
news, u(x) = y, and at a ctitical value of the lnwm

field density this homogenm.ts solution bemmm utlst~-
ble. [n general there will he a broken symmetry soluti{)u

f < 1. ‘rhese solutions correspond to situations Wlwrr
the pheromonal field b in n birnodal stmtrwhvrv i1 (VIII

twke one of two pcaeible valu- at unch point.

15Ibid.
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g(r)

homogeneous
state

r

broken
symmetry

Figure 1: Typical stabiltiy curve g(r)

The mean field order parameter equation for the
fixed pheromonsl field is

au(x,r)
— = -m u + q (p(c7))

&r

qfvf(u)
= ‘s a + f dDx’ ~(m(x’))” (28)

The bimodal field value can be detertnined from Eq. 28
by noting that

; /f(a(x))dDx= /L+/(a+) + 14-f(fr-), (29)

where M+ and M- are the fractions of the total volume in
state space which take the field valu= u+ and u- respec-
tively. The stationary values are given by the solutions
of the fixed point equationa

u+ =y(l +V)[l +u/R(u+, c7-)]-’

a- = “/(1 +V)[V + R(L7+,U-)]-1, (30)

where R(x, y) = f(U(X))/f(U(y)), and v = /b-/#+.
Theee lead to an implicit equation for R,

o = 4(R; 7,U, 7rp)

y(l+u)
= f (mm? )[

~_f ‘7(1+U)
)m;”p ‘ ’31’

The roots R of 4 CM then in principle be found aa func-
tions of ~, u, and the particle parametem XP which in-
fluence the transition function ~.

[n adcMon it can be shownle that if j is strictly
excltakrry (j’ z O) the function

JW(li;uo,v,lr) 3 ~R& O(x;ao,u,r), (:)’2)

—
‘@Mlllonu ( 1992s),

Figure ‘2: Transiton functions for vaqing J and b

is bound from below,

o(R; a& L’, ?r)~ - f2(t70(l + L’):r)
2f(o; 7r)

(:1:1)

strictly decreasing 4 < l). W is therefore a Ly;tpunuv
function for the pheromonal field. Stable fixed points
R are determined from W(n) = O and O“(R) >0, and
critical paints by @(l?; r. )

4 Ant Swarms

4,1 Microscopic ant

= o and #’(~: ;,) = O.

behavior

The microscopic dynamics of ants can be dmcribed
by the pheromone energy function

( +)U(tr)=-in 1+

where u is the pheromone density. and d is a dirrlen-
‘7 The function ~(a) issionles behavioral parameter.

given by Eq, 19, and the particle parameters are then b
and T. The temperature parameter T = 1/d dmcribes
the internal randomn= of the response of the ants to
the pheromomd field. This function is based mppro~i-

mately on a model for Oemotropoteud (scwnt grwlient
following),ie and on experimental olxrmmtions of Hcclml
ante. 10 For the case where the density of ants it low.
and hence the pheromone density is low (a < c 1/d),
we can make use of the approximate energy function
Uo(a) L=- In(l +u). The constant 1/6 will be known tw
the capacity, When cr approachm 1/b the ttnts rwpond
Iem accurately to pheromone gredients.

An Illustration of this effect k shown in Fig[ire ‘2. A
given current of organistru f flows into B jurwti(m frfm~

‘TMIIIODM(l#t13).
“V, Cdnbukr, & J.-L, ~neubur~, J. ‘/’hear, Hid, 151$,:13!)

(1991).

‘“J.-L, Lbneuburg, et. d. J. hwecf Uchu, 32 130
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the ]eft. on the Iowcr branch the pheromone density is
fixed at Uo, and on the upper branch a is allowed to vary.
7(u), the proportion of the curr~nt which flOWS into the
upper branch, is given by the sigmoid.d function

7(0) = [1 + exp(d~(a)/~(~o) )l-L . (35 )

The plots on the right of Figure’2 shows T(u ) for varying
valuee of ~ and 6. The upper plot. where 6 is fixed, shows
the influence of increasing the temperature (lowering J).
ASthe temperature incre- the threshold response be
comes less and less pronounced. In the opposite limit
d - m, 7(u) would be a step function O(u - UO). In
this timit all of the ants would choose the branch with
the greatestpheromone density. l’~ :he lower plot the
noise level is fixed, and the capacity 1/6 is varied. It is
interesting to note that the effects of decreasing the ca-
pacity with fixed temperature are similar to the effects
of increasing the temperature with fixed capacity. When
the density of the ants incre-, the pheromone density
incre~ up w and beyond the capacity, the qualita-
tive effects on the behavior of the ants is the same m
if the tem~tium w incnmsed This giv= the swarm
roughly the ability to modulate its temperature by mod-
ulating i~ numbem.

This carI be made more clear by defining an effec-
tive temperature factor d(u) through the relation j(a) =
exp( -L?Uo(u)/@(u)). 8(u) roughly measum the effective
change in temperature as a function of the pheromonaf
field when compared to the case where 6 = O, which cor-
res~nd to the energy function CJO. The effective tem-
perature is then given by O(u)T where

~(a) = In(l + *)

In(l +u) “
(36)

Fig, 3 illustrate the increase in the effective temper-
ature with increasing u for three different valuea of 6.
Since increasing the temperature tends to decrease st~

bifity, we might expect any organized behavior to break-

down when the numk of partidpanta grows too large.
It is this ability or tha swarm to seWmodify ita tem-
perature which allowa it, in a sanw, to traverse ita var-
ioua phaae trmmition bounclaria. Such boundariat are
of crucial importance in A.f-orgmdzatlon and emergent

phenomena, and it has been propcwd that the ability to

self-organize at or near these boundarkm & at tho heart
of adaptive, emergent biologid systems.

4.2 Order parameter and critical expommto

The effect of the slaving of the stable modes of a SY*
tern at a critk.al point is to redu,ca the dlmenaionallty of

1.5 ~

1.4 7’

3 LO 15 20

u

Figure 3: Effective temperature factor

the systems down to an effective set of order paranw-
ter equations. There is not space here to fully discuss
the complete reduction of the system. but the two order
parameters we have introduced are R, and L.1,Instead
of R we can make used of the easily observable order
parameter M = p+ - p-, which is just the difference
in the densitiee of ants on the nodea in the two states,
In this regard this order parameter is similar to the or-
der parameter of a g-liquid transition, where p+ would
repr~nt the density of the liquid and p- the density of
the gas. We can illustrate the phase transition at the
critical temperature 7’Cand the resulting emergence of
the order parameter M in Fig. 5(a). This behavior of the
order parameter versus the temperature is reminiscent
of equilibrium phsse transitions in physics. The critical
temperature is given, in terms of the other parameters
es

T. = 7
l+~+26y+L5#+fs2y2”

(37)

We can alao plot the order parameter w a function of ~,
that is, the equations of state, shown in Fig. 5(b), clearly
illustrating both the second and fimt order transitions,

Very C1OWto the critical points, the order parameter
scafea accordhg to criticaf exponents which are ind~
pendent of the particular parametira of the system. For
instance, we obtain the mean-field mitical behavior

M * Ii - TClLt2. (:18)

4.3 Spontaneous symmetry breaking

The critical points of the homogeneous phnee ure g
by the condltlon ,x(Y.) = T/70, which has solutions

fl-%5-l *@-2 L?-.l/M; T
7: = 26(1 +6)

ven

:]iJ)
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(a) .-

TTc

‘=
:5 1?

Y

Figure 4: Pbts of (a) the order parameter as a function

of temperature, and (b) the equations of state for viirying
values of 6.

where ~: is the value of v where the symmetric phase be
cornea unstable as ~ w increased, and V: is the v~ue of y
where the symmetric phase again becom~ stable. These
critical points are independent of the order parameter v
u could be expected, since in the homogenexms phase
v do= not really exist. These critical points themeelvee
are the result of a bifurcation controlled by 6. This bi-
furcation only occurs for delta below the critical point

6<6*=~. (40)

When 6>6. no symmetry breaking ie ~ible, irrespec-

tive of?,
The broken symmetry etateu and critical pointe can

be found from the Lyapunov function for the swarm

1:H--w Rum.

.. --- ‘..“- .=-
----- --. .

-------
----- ‘-

—-——— .—— - .. ._

b

6

Figure 5: 6- ~ phase diagrams.

+ *( Y+6v+LI+7v+6w)-Ru( 67+w+6w), (11)

which is calculated as described above, There is a region
of twistability, where either the inhomogeneous phase
or the homogeneous phase are possible. Which is chm
sen will depend on the initial conditions, and hysteresis
(muMple valuea of the order parameter for the same val-
ucs of the state variables) is possible. For a given 6 this
region extends from ~~ < y < V?(V), where ~? mark the
location of a firstor&r transition. For certain case 7:(v)
as a function of 6 can be calculated analytically, but we
will usually have to reeort to Newton’s method, or some
other numerical scheme. All of this information can be
illustrated by plotting the critical points Y$ and #(1)
as a functiom of 6. The resulting phnse diagram shown
in Figure 4 illustrates the regions of symrmtric phw,
bistability and triatabiiity. This plot is a simple illus-

tration the effect of behavioral and swam parameters
on the swarm as a whole, and the relatiou these effects
to euh other. In this case 6 is a behavioral parameter
which could be expscttxl to change on the ewlutiorwy

time scale, and V, which is proportional to the number
of participants, is a swarm parameter which deterrmntw

9



the behavioral .-phase”’of the swarm.
In general the various inhomogeneow states labeled

by u will become ,mstable at d~flemnt ualues of T. In
this case we can have a quite complicated sequence of
ordering tra~itions as T is incre=ed. [n [his regard
Lhe praence of the fifit order transition boundaries wi ]]

play an important role. This is because after an ini-
tial symmetry breaking omu~ upon passage through a

second order tr~sition, this broken symmetry state can
icse]f &come unstable jor non- :em L,a/ue OJthe refer pa-
tumeter .}1. Th~ first order instabi]itim can produce a

cascade, or hierarchy of ordering transitions. This order-

ing can be used to explore some other experiments with
actual ants, but due to its complexity and the limited

space here, whole subject is b~t taken up elsewhere.:w

4.4 Swarrne on a lattice

All of the above results hold when the configuration
space is not continuous but a lattice. Such is the case
in many of the laboratory experiments with actual ants
which have been recently been studied.2L In these ex-
periments ants are allowed to walk on bridgee connected
together in a somewhat arbitrary way, forming a net-
work. Detailed balance is imposed by the experimental
setup where at each “fork in the road” an ant can chose
on]y between geometrically equivalent altemativee. The
topology of the network is defined by a connection mat-
rix, and the swarm can be described the diacretized
equationa

(42)

(43)

where in this case different valuee of qi in each segment
are allowed. The particle deneitieu are slaved to the
pheromone denaitiee via the quasi-stationary dfatrihu-
tion

fVexp(-@LJ(&))
“ = ~~j exp(-@U(a.?~-

(44)

All of the previous result hold, except now the order
parameter u is constrained to a discrete setof values u =

~ Pi+/ ~~i- , where At are the lmgths of the bridg=
in the + mode. A discussion of how these equationa
lead to the various type of obeerwxl behaviom in the

experimental situations hea been published eleewhere.m

‘Milbnu (1093),
a’ Deneubollrg, at. d.
2’M,M. MWUM. J, 7hIvr. AoL (in pm, lt?02b); In: Coop

atiam Phmomana mad Cellular Automata , (in PM, 19Mc).

e“

4.5 Incorporation of fluctuations

The results above show how the essentially irl!illite (!~ ●

script ion for the pheromonal field is ret!uced to t!i(’bi-

modal fie]d eqtlatiow b* = -K u* + r) p=. \li\liillq IISP

of the results at the end of section 3.2. this lew] (o it

bimodal set of Langevin equations

duk

T = –~ U* + ~ (P*) + J((JP=V) <(t). (15)

which leads to a Fokker-PIMck equation

a,p(a+. u-) = a.+ ((K a+ - (p+) )p))

+d&- ((K a- .- (p-))/l))

+; (%+(((O+)2)P) + &(((W%)) . (-16)

where Eq. -15has ben interpreted in the Ito sense.
A more or less complete d=cription incorporating

the fluctuations is poasible,~ which we outline here. In
the region of the non-equilibrium phase transi Lion the
stable mode S = (U+ + u u–)/( 1 + u) can be adiabati-
cally eliminatai from the picture, this time directly from
Eq. 46. We can then write down a one dimension
Fokker-P1anck equation for the order parameter density

P(lkf) which has an analytic solution. The resulting ~
lution allows the exploration of the effect of the fluctu-
ations near the non-equilibrium phase tmnsitions, and
a treatment of the influence of fluctuations. not only on
the critical exponents as in the case of equilibrium phase
transitiona, but also on the critical points. Since the crit-
ical points themselves will depend on the strength and
type of fluctuations, Lhejluctuation9 ma~ pia~ a active,
creatiue mle in the pmhbction of order in the vicinity o~
a nonquihbnum phase trumitwn. =

‘%lloau (1993).

24Millonas (1992).
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